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Abstract
For n-vertex, d-dimensional lattices � with d � 2, the number of spanning
trees NST(�) grows asymptotically as exp(nz�) in the thermodynamic limit.
We present an exact closed-form result for the asymptotic growth constant
zbcc(d) for spanning trees on the d-dimensional body-centred cubic lattice. We
also give an exact integral expression for zfcc on the face-centred cubic lattice
and an exact closed-form expression for z488 on the 4 8 8 lattice.

PACS numbers: 02.10.Ox, 05.20.−y

1. Introduction

Let G = (V ,E) denote a connected graph (without loops) with vertex (site) and edge (bond)
sets V and E. Let n = v(G) = |V | be the number of vertices and e(G) = |E| the number
of edges in G. A spanning subgraph G′ is a subgraph of G with v(G′) = |V |, and a tree is
a connected subgraph with no circuits. A spanning tree is a spanning subgraph of G which
is a tree (and hence e(G′) = n − 1). A problem of fundamental interest in mathematics and
physics is the enumeration of the number of spanning trees on the graph G,NST(G). This
number can be calculated in several ways, including as a determinant of the Laplacian matrix
of G and as a special case of the Tutte polynomial of G [1, 2]. In this paper we shall present
an exact closed-form result for the asymptotic growth constant for spanning trees on the
d-dimensional body-centred cubic lattice, denoted bcc(d), with bcc(3) ≡ bcc. We shall also
give an exact integral expression for the zfcc describing the face-centred cubic lattice and an
exact closed-form expression z488 for the 4 8 8 lattice. A previous study on the enumeration of
spanning trees and the calculation of their asymptotic growth constants was carried out in [3].
In that work, closed-form integrals for these quantities were given, and from the integral for
the bcc(d) lattice, an infinite series representation was derived. Our present result for the
bcc(d) lattice is obtained by summing exactly this infinite series. Similarly, our present result
for the 4 8 8 lattice is obtained by an exact closed-form evaluation of the integral given for
this lattice in [3].
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2. Background and method

We briefly recall some definitions and background on spanning trees and the calculational
method that we use. For G = G(V,E), the degree ki of a vertex vi ∈ V is the number of
edges attached to it. A k-regular graph is a graph with the property that each of its vertices has
the same degree k. Two vertices are adjacent if they are connected by an edge. The adjacency
matrix A(G) of G is the n× n matrix with elements Aij = 1 if vi and vj are adjacent and zero
otherwise. The Laplacian matrix Q = Q(G) is the n × n matrix Q with Qij = kiδij − Aij .
One of the eigenvalues of Q(G) is always zero; let us denote the rest as λi(G), 1 � i � n− 1.
A basic theorem is that [1, 2] NST(G) = (1/n)

∏n−1
i=1 λi(G). Here we shall focus on k-regular

d-dimensional lattices �. For these lattices, if d � 2, then in the thermodynamic limit,
NST grows exponentially with n as n → ∞; that is, there exists a constant z� such that
NST(�) ∼ exp(nz�) as n → ∞. The constant describing this exponential growth is thus
given by

z� = lim
n→∞ n−1 ln NST(�), (1)

where �, when used as a subscript in this manner, implicitly refers to the thermodynamic
limit of the lattice �. A regular d-dimensional lattice is comprised of repeated unit cells,
each containing ν vertices. Define a(ñ, ñ′) as the ν × ν matrix describing the adjacency of
the (d-dimensional) vertices of the unit cells ñ and ñ′, the elements of which are given by
a(ñ, ñ′)ij = 1 if vi ∈ ñ is adjacent to vj ∈ ñ′ and 0 otherwise. Assuming that a given lattice
has periodic boundary conditions, and using the resultant translational symmetry, we have
a(ñ, ñ′) = a(ñ − ñ′), and we can therefore write a(ñ) = a(ñ1, . . . , ñd). In [3] a method
was derived to calculate NST(�) and z� in terms of a matrix M which is determined by these
a(ñ, ñ′). For a d-dimensional lattice, define

M(θ1, . . . , θd) = k · 1 −
∑

ñ

a(ñ) eiñ·θ (2)

where, in this equation, 1 is the unit matrix and θ stands for the d-dimensional vector
(θ1, . . . , θd). Then [3]

z� = 1

ν

∫ π

−π


 d∏

j=1

dθj

2π


 ln[det(M(θ1, . . . , θd))]. (3)

For a k-regular graph �, a general upper bound is z� � ln k. A stronger upper bound for
a k-regular graph � with coordination number k � 3 can be obtained from the bound [4, 5]

NST(G) �
(

2 ln n

nk ln k

)
(Ck)

n, (4)

where

Ck = (k − 1)k−1

[k(k − 2)]
k
2 −1

. (5)

With equation (1), this then yields [3]

z� � ln(Ck). (6)

It is of interest to see how close the exact results are to these upper bounds. For this purpose,
we define the ratio

r� = z�

ln Ck

, (7)

where k is the coordination number of �.
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3. bcc(d) lattice

For the bcc(d) lattice a unit cell contains νbcc(d) = 2 vertices located at v1 = (0, . . . , 0) and
v2 = (

1
2 , . . . , 1

2

)
. This lattice has coordination number kbcc(d) = 2d . Using equation (3),

Shrock and Wu [3] obtained

zbcc(d) = d ln 2 + Ibcc(d) (8)

where

Ibcc(d) = 1

2

∫ π

−π


 d∏

j=1

dθj

2π


 ln


1 −

d∏
j=1

cos2(θj /2)




=
∫ π

−π


 d∏

j=1

dθj

2π


 ln


1 −

d∏
j=1

cos θj


 . (9)

Expanding the logarithm and carrying out the integration term by term yields the infinite series
representation [3]

Ibcc(d) = −1

2

∞∑
�=1

1

�

(
(2�)!

22�(�!)2

)d

. (10)

We now sum this series exactly. First,

Ibcc(d) = −1

2

∞∑
�=1

(� − 1)![(2�)!]d

22�d(�!)2d+1

= −1

2

∞∑
k=0

(k!)2[(2k + 2)!]d

22(k+1)d [(k + 1)!]2d+1k!

= − 1

2d+1

∞∑
k=0

[�(k + 1)]2[�(2k + 3)]d

2(2k+1)d [�(k + 2)]2d+1k!
. (11)

Next, we use the duplication formula for the Euler gamma function,

�(2z) = (2π)−1/2 22z− 1
2 �(z)�

(
z + 1

2

)
(12)

with z = k + 3
2 , together with �(1/2) = √

π , to express

�(2k + 3)

22k+1�(k + 2)
= �

(
k + 3

2

)
�

(
3
2

) . (13)

Substituting this into equation (11), we have

Ibcc(d) = − 1

2d+1

∞∑
k=0

[�(k + 1)]2[�
(
k + 3

2

) /
�

(
3
2

)
]d

[�(k + 2)]d+1k!

= −2−(d+1)
d+2Fd+1([1, 1, 3/2, . . . , 3/2], [2, . . . , 2], 1) (14)

where there are d + 2 entries in the first square bracket [· · ·] and d + 1 entries in the second
square bracket [· · ·] in the argument, and pFq is the generalized hypergeometric function

pFq([a1, . . . , ap], [b1, . . . , bq ], x) =
∞∑

k=0

(∏p

j=1(aj )k∏q

r=1(br)k

)
xk

k!
(15)



5656 S-C Chang and R Shrock

Table 1. Values of zbcc(d) and rbcc(d).

d zbcc(d) rbcc(d)

1 0 –
2 1.166 243 616 123 275 0.958 770 222 806 4145
3 1.990 191 418 271 941 0.991 245 705 530 6051
4 2.732 957 535 477 362 0.997 709 897 827 5579
5 3.447 331 914 522 398 0.999 341 328 007 0963
6 4.150 116 933 352 462 0.999 800 212 115 9708
7 4.847 789 269 805 724 0.999 937 306 164 9456
8 5.543 104 959 793 989 0.999 979 850 084 6987
9 6.237 305 017 795 394 0.999 993 405 362 2532

10 6.930 967 870 288 660 0.999 997 810 313 5475

where ck = �(c + k)/�(c). Hence,

zbcc(d) = d ln 2 − 2−(d+1)
d+2Fd+1([1, 1, 3/2, . . . , 3/2], [2, . . . , 2], 1). (16)

We comment on some special cases. For d = 1, the bcc(1) lattice with free (periodic)
boundary conditions degenerates effectively to a line (circuit) graph, for which, respectively,
NST = 1 and NST = n; in both cases, it follows that zbcc(1) = 0. Using the value
3F2([1, 1, 3/2], [2, 2], 1) = 4 ln 2, we recover this elementary result. For d = 2, the bcc(2)

lattice is equivalent to the square lattice, for which zsq = (4/π)β(2) = 1.166 2436.. [6, 7],
where β(s) = ∑∞

n=0(−1)n(2n + 1)−s and β(2) = C = 0.915 965 594 177.. is the Catalan
constant. The general result (8) with (14) evaluated for d = 2 agrees with this, since
4F3([1, 1, 3/2, 3/2], [2, 2, 2], 1) = 16(ln 2 − (2C/π)). Our general exact result for zbcc(d)

provides quite accurate values for higher values of d, which we list in table 1, together with
the corresponding ratios (7) which give a comparison with the upper bound (6). Evidently, the
exact values are very close to this upper bound and move closer as d increases.

4. fcc lattice

The face-centred cubic (fcc) lattice has coordination number kfcc = 12 and a unit cell consisting
of the νfcc = 4 vertices (0, 0, 0),

(
0, 1

2 , 1
2

)
,
(

1
2 , 0, 1

2

)
and

(
1
2 , 1

2 , 0
)
. For this lattice, M(θ1, θ2, θ3)

is [3]

M(θ1, θ2, θ3) =




12 −(v2v3)
∗ −(v1v3)

∗ −(v1v2)
∗

−v2v3 12 −v∗
1v2 −v∗

1v3

−v1v3 −v1v
∗
2 12 −v∗

2v3

−v1v2 −v1v
∗
3 −v2v

∗
3 12


 (17)

where vj = 1 + eiθj , j = 1, 2, 3. The evaluation of the determinant yields

zfcc = ln(12) +
1

4

∫ π

−π

dθ1

2π

∫ π

−π

dθ2

2π

∫ π

−π

dθ3

2π
ln F(θ1, θ2, θ3) (18)

where, with the abbreviation cj ≡ cos(θj /2),
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F(θ1, θ2, θ3) = [
1 + 1

3 (−c2c3 + c3c1 + c1c2)
][

1 + 1
3 (c2c3 − c3c1 + c1c2)

]
× [

1 + 1
3 (c2c3 + c3c1 − c1c2)

][
1 − 1

3 (c2c3 + c3c1 + c1c2)
]

= 1 − 2
9 [(c1c2)

2 + (c2c3)
2 + (c3c1)

2] − 8
27 (c1c2c3)

2

− 2
81 (c1c2c3)

2
(
c2

1 + c2
2 + c2

3

)
+ 1

81 [(c1c2)
4 + (c2c3)

4 + (c3c1)
4]. (19)

(This corrects an algebraic error in equation (5.3.3) of [3].) Evaluating this numerically, we
find that zfcc 	 2.412 92. Substituting zfcc into equation (7), we get rfcc 	 0.989 15, so that
the upper bound (7) is very close to the actual value of the growth constant.

5. 4 8 8 lattice

An Archimedean lattice is a uniform tiling of the plane by regular polygons in which all
vertices are equivalent. Such a lattice can be defined by the ordered sequence of polygons
that one traverses in making a complete circuit around the local neighbourhood of any vertex.
This is indicated by the notation � = (∏

i p
ai

i

)
, meaning that in this circuit, a regular pi-sided

polygon occurs contiguously ai times. We consider here the 4 8 8 lattice involving the tiling of
the plane by squares and octagons. In equation (4.11) of [3], the asymptotic growth constant
for this lattice was calculated to be

z488 = 1

2
ln 2 +

1

4

∫ π

−π

dθ1

2π

∫ π

−π

dθ2

2π
ln[7 − 3(cos θ1 + cos θ2) − cos θ1 cos θ2]

= 1

4
ln 2 +

1

4π

∫ π

0
dθ ln[7 − 3 cos θ + 4 sin(θ/2)

√
5 − cos θ ], (20)

where the integral on the second line of equation (20) is obtained by doing one of the two
integrations in the expression on the first line. These integrals were evaluated numerically to
obtain the result z488 = 0.786 684(1), where the number in parentheses indicates the estimated
error in the last digit.

We have derived an exact closed form expression for this integral. We begin by recasting
the integral in the equivalent form.

z488 = 1

4
ln 2 +

1

2π

∫ π

0
dθ ln(2 sin(θ/2) +

√
4 + 2 sin2(θ/2))

= 3

4
ln 2 +

1

π

∫ π/2

0
dφ ln(sin(φ) +

√
1 + (1/2) sin2(φ)). (21)

That is,

z488 = 3
4 ln 2 + I (1/

√
2) (22)

where

I (a) = 1

π

∫ π/2

0
dφ ln(sin φ +

√
1 + a2 sin2 φ). (23)

In equation (23), with no loss of generality, we take a to be non-negative. We will give a general
result for I (a) and then specialize to our case a = 1/

√
2. First, we note that I (1) = C/π ,

where C is the Catalan constant. Next, assume 0 � a < 1. Taking the derivative with respect
to a and doing the integral over φ in equation (23), we get

I ′(a) = −a/2 + (2/π) tan−1 a

(1 − a2)
. (24)
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To calculate I (a), we then use I (a) − I (0) = ∫ a

0 I ′(x)dx and observe that

I (0) = 1

π

∫ π/2

0
dφ ln(sin(φ) + 1) = − ln 2

2
+

2C

π
. (25)

We also make use of the integrals∫ a

0

x

(1 − x2)
dx = −1

2
ln(1 − a2) (26)

and ∫ a

0

tan−1 x

(1 − x2)
dx = −C

2
− π

8
ln

(
1 + a

1 − a

)
+

1

2
Ti2

(
1 + a

1 − a

)
(27)

to obtain

I (a) = C

π
+

1

2
ln

(1 − a

2

)
+

1

π
Ti2

(
1 + a

1 − a

)
if 0 � a < 1, (28)

where Ti2(x) is the inverse tangent integral [8]

Ti2(x) =
∫ x

0

tan−1 y

y
dy = x[3F2([1, 1/2, 1/2], [3/2, 3/2],−x2)]. (29)

(Here the arctangent is taken to lie in the range −π/2 < tan−1 y < π/2.) Evaluating our
result (28) for I (a) at a = 1/

√
2 and substituting into equation (22), we obtain the exact,

closed-form expression

z488 = C

π
+

1

2
ln(

√
2 − 1) +

1

π
Ti2(3 + 2

√
2). (30)

The numerical evaluation of equation (30) agrees with the evaluation given in [3] to the accuracy
quoted there and allows one to obtain higher accuracy; for example, to 15 significant figures,
z488 = 0.786 684 275 378 832. We note that the Ti2 function also appears at intermediate
stages in the derivation of ztri for the triangular lattice [9]. For completeness, we have also
calculated I (a) for a > 1 with the result

I (a) = C

π
+

1

2
ln

[
(a + 1)2

2(a − 1)

]
+

1

π
Ti2

(
1 + a

1 − a

)
if a > 1. (31)
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